Законы развития технических систем

  1. Закон полноты частей системы. Необходимым условием принципиальной жизнеспособности технической системы является наличие и минимальная работоспособность основных частей системы.
  2. Закон «энергетической проводимости» системы. Необходимым условием принципиальной жизнеспособности технической системы является сквозной проход энергии по всем частям системы.
  3. Закон согласования ритмики частей системы. Необходимым условием принципиальной жизнеспособности технической системы является согласование ритмики (частоты колебаний, периодичности) всех частей системы.
  1. Закон увеличения степени идеальности системы. Развитие всех систем идет в направлении увеличения степени идеальности.
  2. Закон неравномерности развития частей системы. Развитие частей системы идет неравномерно; чем сложнее система, тем неравномерное развитие её частей.
  3. Закон перехода в надсистему. Исчерпав возможности развития, система включается в надсистему в качестве одной из частей; при этом дальнейшее развитие идет уже на уровне надсистемы.
  4. Закон перехода с макроуровня на микроуровень. Развитие рабочих органов системы идет сначала на макро-, а затем на микроуровне.
  5. Закон увеличения степени вепольности. Развитие технических систем идет в направлении увеличения степени вепольности.

Законы развития систем

Статика

Закон полноты частей системы
Закон «энергетической проводимости» системы
Закон согласования ритмики частей системы

Кинематика

Закон увеличения степени идеальности системы
Закон неравномерности развития частей системы
Закон перехода в надсистему

Динамика

Закон перехода с макроуровня на микроуровень
Закон повышения степени вепольности

Законы развития технических систем можно разделить на три группы: «статику», «кинематику» и «динамику».

Начнем со «Статики» — законов, которые определяют начало жизни технических систем.

Любая техническая система возникает в результате синтеза в единое целое отдельных частей. Не всякое объединение частей дает жизнеспособную систему. Существуют по крайней мере три закона, выполнение которых необходимо для того, чтобы система оказалась жизнеспособной.

1. Закон полноты частей системы

Необходимым условием принципиальной жизнеспособности технической системы является наличие и минимальная работоспособность основных частей системы.

Каждая техническая система должна включать четыре основные части: двигатель, трансмиссию, рабочий орган и орган управления. Смысл закона 1 заключается в том, что для синтеза технической системы необходимо наличие этих четырех частей и их минимальная пригодность к выполнению функций системы, ибо сама по себе работоспособная часть системы может оказаться неработоспособной в составе той или иной технической системы. Например, двигатель внутреннего сгорания, сам по себе работоспособный, оказывается неработоспособным, если его использовать в качестве подводного двигателя подводной лодки.

Закон 1 можно пояснить так: техническая система жизнеспособна в том случае, если все ее части не имеют «двоек», причем «оценки» ставятся по качеству работы данной части в составе системы. Если хотя бы одна из частей оценена «двойкой», система нежизнеспособна даже при наличии «пятерок» у других частей. Аналогичный закон применительно к биологическим системам был сформулирован Либихом еще в середине прошлого века («закон минимума»).

Из закона 1 вытекает очень важное для практики следствие.

Чтобы техническая система была управляемой, необходимо, чтобы хотя бы одна ее часть была управляемой.

«Быть управляемой» — значит менять свойства так, как это надо тому, кто управляет.

Знание этого следствия позволяет лучше понимать суть многих задач и правильнее оценивать полученные решения. Возьмем, например, задачу 37 (запайка ампул). Дана система из двух неуправляемых частей: ампулы вообще неуправляемы — их характеристики нельзя (невыгодно) менять, а горелки плохо управляемы по условиям задачи. Ясно, что решение задачи будет состоять во введении в систему еще одной части (вепольный анализ сразу подсказывает: это вещество, а не поле, как, например, в задаче 34 об окраске цилиндров). Какое вещество (газ, жидкость, твердое тело) не пустит огонь туда, куда он не должен пройти, и при этом не будет мешать установке ампул? Газ и твердое тело отпадают, остается жидкость, вода. Поставим ампулы в воду так, чтобы над водой поднимались только кончики капилляров (а.с. № 264 619). Система приобретает управляемость: можно менять уровень воды — это обеспечит изменение границы между горячей и холодной зонами. Можно менять температуру воды — это гарантирует устойчивость системы в процессе работы.

2. Закон «Энергетической проводимости» системы

Необходимым условием принципиальной жизнеспособности технической системы является сквозной проход энергии по всем частям системы.

Любая техническая система является преобразователем энергии. Отсюда очевидная необходимость передачи энергии от двигателя через трансмиссию к рабочему органу.

Передача энергии от одной части системы к другой может быть вещественной (например, вал, шестерни, рычаги и т.д.), полевой (например, магнитное поле) и вещественно-полевой (например, передача энергии потоком заряженных частиц). Многие изобретательские задачи сводятся к подбору того или иного вида передачи, наиболее эффективного в заданных условиях. Такова задача 53 о нагреве вещества внутри вращающейся центрифуги. Вне центрифуги энергия есть. Имеется и «потребитель», он находится внутри центрифуги. Суть задачи — в создании «энергетического моста». Такого рода «мосты» могут быть однородными и неоднородными. Если вид энергии меняется при переходе от одной части системы к другой — это неоднородный «мост». В изобретательских задачах чаще всего приходится иметь дело именно с такими мостами. Так, в задаче 53 о нагреве вещества в центрифуге выгодно иметь электромагнитную энергию (ее передача не мешает вращению центрифуги), а внутри центрифуги нужна энергия тепловая. Особое значение имеют эффекты и явления, позволяющие управлять энергией на выходе из одной части системы или на входе в другую ее часть. В задаче 53 нагрев может быть обеспечен, если центрифуга находится в магнитном поле, а внутри центрифуги размещен, например, диск из ферромагнетика. Однако по условиям задачи требуется не просто нагревать вещество внутри центрифуги, а поддерживать постоянную температуру около 2500 С. Как бы ни менялся отбор энергии, температура диска должна быть постоянной. Это обеспечивается подачей «избыточного» поля, из которого диск отбирает энергию, достаточную для нагрева до 2500 С, после чего вещество диска «самоотключается» (переход через точку Кюри). При понижении температуры происходит «самовключение» диска.

Важное значение имеет следствие из закона 2..

Чтобы часть технической системы была управляемой, необходимо обеспечить энергетическую проводимость между этой частью и органами управления.

В задачах на измерение и обнаружение можно говорить об информационной проводимости, но она часто сводится к энергетической, только слабой. Примером может служить решение задачи 8 об измерении диаметра шлифовального круга, работающего внутри цилиндра. Решение задачи облегчается, если рассматривать не информационную, а энергетическую проводимость. Тогда для решения задачи нужно прежде всего ответить на два вопроса: в каком виде проще всего подвести энергию к кругу и в каком виде проще всего вывести энергию сквозь стенки круга (или по валу)? Ответ очевиден: в виде электрического тока. Это еще не окончательное решение, но уже сделан шаг к правильному ответу.

3. Закон согласования ритмики частей системы

Необходимым условием принципиальной жизнеспособности технической системы является согласование ритмики (частоты колебаний, периодичности) всех частей системы.

Примеры к этому закону приведены в гл.1..

К «Кинематике» относятся законы, определяющие развитие технических систем, независимо от конкретных технических и физических факторов, обусловливающих это развитие.


4. Закон увеличения степени идеальности системы

Развитие всех систем идет в направлении увеличения степени идеальности.

Идеальная техническая система — это система, вес, объем и площадь которой стремятся к нулю, хотя ее способность выполнять работу при этом не уменьшается. Иначе говоря, идеальная система — это когда системы нет, а функция ее сохраняется и выполняется.

Несмотря на очевидность понятия «идеальная техническая система», существует определенный парадокс: реальные системы становятся все более крупноразмерными и тяжелыми. Увеличиваются размеры и вес самолетов, танкеров, автомобилей и т.д. Парадокс этот объясняется тем, что высвобожденные при совершенствовании системы резервы направляются на увеличение ее размеров и, главное, повышение рабочих параметров. Первые автомобили имели скорость 15–20 км/ч. Если бы эта скорость не увеличивалась, постепенно появились бы автомобили, намного более легкие и компактные с той же прочностью и комфортабельностью. Однако каждое усовершенствование в автомобиле (использование более прочных материалов, повышение к.п.д. двигателя и т.д.) направлялось на увеличение скорости автомобиля и того, что «обслуживает» эту скорость (мощная тормозная система, прочный кузов, усиленная амортизация). Чтобы наглядно увидеть возрастание степени идеальности автомобиля, надо сравнить современный автомобиль со старым рекордным автомобилем, имевшим ту же скорость (на той же дистанции).

Видимый вторичный процесс (рост скорости, мощностей, тоннажа и т.д.) маскирует первичный процесс увеличения степени идеальности технической системы. Но при решении изобретательских задач необходимо ориентироваться именно на увеличение степени идеальности — это надежный критерий для корректировки задачи и оценки полученного ответа.

5. Закон неравномерности развития частей системы

Развитие частей системы идет неравномерно; чем сложнее система, тем неравномернее развитие ее частей.

Неравномерность развития частей системы является причиной возникновения технических и физических противоречий и, следовательно, изобретательских задач. Например, когда начался быстрый рост тоннажа грузовых судов, мощность двигателей быстро увеличилась, а средства торможения остались без изменения. В результате возникла задача: как тормозить, скажем, танкер водоизмещением 200 тыс. тонн. Задача эта до сих пор не имеет эффективного решения: от начала торможения до полной остановки крупные корабли успевают пройти несколько миль…

6. Закон перехода в Надсистему

Исчерпав возможности развития, система включается в надсистему в качестве одной из частей; при этом дальнейшее развитие идет на уровне надсистемы.
Об этом законе мы уже говорили.

Перейдем к «Динамике».

Она включает законы, отражающие развитие современных технических систем под действием конкретных технических и физических факторов. Законы «статики» и «кинематики» универсальны — они справедливы во все времена и не только применительно к техническим системам, но и к любым системам вообще (биологическим и т.д.). «Динамика» отражает главные тенденции развития технических систем именно в наше время.

7. Закон перехода с макроуровня на микроуровень

Развитие рабочих органов системы идет сначала на макро-, а затем на микроуровне.

В большинстве современных технических систем рабочими органами являются «железки», например винты самолета, колеса автомобиля, резцы токарного станка, ковш экскаватора и т.д. Возможно развитие таких рабочих органов в пределах макроуровня: «железки» остаются «железками», но становятся более совершенными. Однако неизбежно наступает момент, когда дальнейшее развитие на макроуровне оказывается невозможным. Система, сохраняя свою функцию, принципиально перестраивается: ее рабочий орган начинает действовать на микроуровне. Вместо «железок» работа осуществляется молекулами, атомами, ионами, электронами и т.д.

Переход с макро- на микроуровень — одна из главных (если не самая главная) тенденций развития современных технических систем. Поэтому при обучении решению изобретательских задач особое внимание приходится обращать на рассмотрение перехода «макро-микро» и физических эффектов, реализующих этот переход.

8. Закон увеличения степени вепольности

Развитие технических систем идет в направлении увеличения степени вепольности.

Смысл этого закона заключается в том, что невепольные системы стремятся стать вепольными, а в вепольных системах развитие идет в направлении перехода от механических полей к электромагнитным; увеличения степени дисперсности веществ, числа связей между элементами и отзывчивости системы.

Многочисленные примеры, иллюстрирующие этот закон, уже встречались при решении задач.

Источник: https://www.altshuller.ru/triz/zrts1.asp

Posted in Теории.